含2kπ-α诱导类型三角函数的不定积分
本经验介绍含2kπ-α诱导类型三角函数的不定积分,即求∫sin(2kπ-α)dα,∫cos(2kπ-α)dα,∫tan(2kπ-α)dα,∫cot(2kπ-α)dα,∫sec(2kπ-α)dα,∫csc(2kπ-α)dα的步骤。
工具/原料
三角函数基本知识
不定积分基本知识
1.含2kπ-α三角函数的诱导公式
1、sin(2kπ-α)=-sin αcos(2kπ-α)=cos αtan(2kπ-α)=-tan αcot(2kπ-α)=-cot αsec(2kπ-α)=sec αcsc(2kπ-α)=-csc α
2、图例解析如下:

3.cos(2kπ-α)的不定积分
1、∫cos(2kπ-α)dα=-∫cos(2kπ-α)d(2kπ-α)=-sin(2kπ-α)+c=sinα+c
2、图例解析如下:

5.cot(2kπ-α)的不定积分
1、∫cot(2kπ-α)d拿骛蟊痊α=-∫cot(2kπ-α)d(2kπ-α)=-∫[cos(2kπ-α)d(2kπ-α)/ sin(2kπ-珍提疮翘α)]=-∫d sin(2kπ-α)/sin(2kπ-α)=-ln|sin(2kπ-α)|+c=-ln|sinα|+c
2、图例解析如下:

7.csc(2kπ-α)的不定积分
1、∫csc(2kπ-α)d拿骛蟊痊α=-∫csc(2kπ-α)d(2kπ-α)=-∫d(2kπ-α)/ sin(2kπ-α)=-∫sin(2k嗝搜肠怵π-α)d(2kπ-α)/ [sin(2kπ-α)]^2=∫dcos(2kπ-α)/ [1-(cos(2kπ-α))^2]=∫dcos(2kπ-α)/ [(1-cos(2kπ-α))(1+ cos(2kπ-α))]=(1/2)[∫dcos(2kπ-α)/ (1-cos(2kπ-α))+∫dcos(2kπ-α)/ (1+cos(2kπ-α))]=(1/2)ln[(1+cos(2kπ-α))/ (1-cos(2kπ-α))]+c=(1/2)ln[(1+cos(2kπ-α))^2/(sin(2kπ-α))^2]+c=ln|(1+cos(2kπ-α))/sin(2kπ-α)|+c=ln|(1+cosα)/sinα|+c=ln|cscα+cota|+c
2、图例解析如下:
